Quantum associative memory
نویسندگان
چکیده
منابع مشابه
Quantum associative memory
This paper combines quantum computation with classical neural network theory to produce a quantum computational learning algorithm. Quantum computation uses microscopic quantum level effects to perform computational tasks and has produced results that in some cases are exponentially faster than their classical counterparts. The unique characteristics of quantum theory may also be used to create...
متن کاملQuantum Associative Memory with Exponential Capacity
Quantum computation uses microscopic quantum level effects to perform computational tasks and has produced results that in some cases are exponentially faster than their classical counterparts by taking advantage of quantum parallelism. The unique characteristics of quantum theory may also be used to create a quantum associative memory with a capacity exponential in the number of neurons. This ...
متن کاملAdiabatic quantum optimization for associative memory recall
2 Hopfield networks are a variant of associative memory that recall patterns stored in the 3 couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the 4 network dynamics that correspond to energetic minima of the spin state. We show that memories 5 stored in a Hopfield network may also be recalled by energy minimization using adiabatic 6 quantum optimizatio...
متن کاملQuantum associative memory with distributed queries
This paper discusses a model of quantum associative memory which generalizes the completing associative memory proposed by Ventura and Martinez. Similar to this model, our system is based on Grover’s well known algorithm for searching an unsorted quantum database. However, the model presented in this paper suggests the use of a distributed query of general form. It is demonstrated that spurious...
متن کاملOptically simulating a quantum associative memory
This paper discusses the realization of a quantum associative memory using linear integrated optics. An associative memory produces a full pattern of bits when presented with only a partial pattern. Quantum computers have the potential to store large numbers of patterns and hence have the ability to far surpass any classical neural network realization of an associative memory. In this work two ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Information Sciences
سال: 2000
ISSN: 0020-0255
DOI: 10.1016/s0020-0255(99)00101-2